SEVERE ACUTE RESPIRATORY SYNDROME (SARAS COVID-2): A COMPREHENSIVE REVIEW

Authors

  • MUHAMMAD WAQAR MAZHAR Department of Biotechnology and Bioinformatics, Government College University, Faisalabad, Pakistan.
  • JAVARIA MAHMOOD Department of Biotechnology and Bioinformatics, Government College University, Faisalabad, Pakistan.
  • SAIRA SAIF Department of Biotechnology and Bioinformatics, Government College University, Faisalabad, Pakistan.
  • MASOOMA BATOOL SHAHZADI Department of Biotechnology and Bioinformatics, Government College University, Faisalabad, Pakistan.
  • HIRA ASLAM Department of Biotechnology and Bioinformatics, Government College University, Faisalabad, Pakistan.

Keywords:

SARS-Cov-2, ACE2, remedsivir, chloroquine, MERS-CoV

Abstract

Severe infection is cause by novel strain of coronaviruses this novel strain is related to human infecting SARS coronavirus. Coronaviruses are present in animals and transfer occur from animal (mammals) to human beings. The virus spreads from Wuhan to other Chinese cities, and then to other countries e.g. Canada, Australia, Singapore, Thailand, Japan, Malaysia and Vietnam. This virus contains functional and structural proteins and single stranded positive sense RNA molecule. SARS-Cov-2 attaches to particular receptor ACE2 in human’s beings, and has its own RNA polymerase. SARS-Cov-2 genome mutation occur with environmental changes and it’s become more harmful in future. The Severe acute respiratory syndrome-Cov-2 is a s.sRNA (positive sense) genome having two lateral unidentified regions, has polyprotein that is coded by a single long ORF and organized in 5' replicate arrangements then constitutional protein such as (S, E, M and N). Coronavirus genome contains 5′ untranslated region with a leader sequence of 5′, ORF 1a/b encoding functional proteins for replication, constitutional proteins with envelope, membranes and nucleoproteins, necessary proteins such as SARS-Cov-2, of 3, 6, 7a, 7b 8 and 9b, and 3′ untranslated region. For treating SARS-Cov-2, FDA approved five drugs that include penciclovir, nafamostat, chloroquine, ribavirin, nitazoxanide and two well-known antiviral drugs, favipiravir (T-705) and Remdesivir (GS5734) evaluated in- vitro for the SARS-Cov-2 clinical isolate for the purpose of checking the antiviral efficiency of these drugs against the virus. To calculate the effectiveness of the drugs on the pathogenicity, infection rate and yield of SARS-Cov-2 standard assay were carried out.

References

Akira, S., Uematsu, S., Takeuchi, O. (2006): Pathogen recognition and innate immunity. – Cell 124(4): 783-801.

Bunte, K., Beikler, T. (2019): Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. International Journal of Molecular Sciences 20(14): 24p.

Chen, Y., Liu, Q., Guo, D. (2020): Emerging coronaviruses: genome structure, replication, and pathogenesis. – Journal of Medical Virology 92(4): 418-423.

Chu, D.K., Pan, Y., Cheng, S.M., Hui, K.P., Krishnan, P., Liu, Y., Ng, D.Y., Wan, C.K., Yang, P., Wang, Q., Peiris, M. (2020): Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. – Clinical Chemistry 66(4): 549-555.

Cong, Y., Ulasli, M., Schepers, H., Mauthe, M., V’kovski, P., Kriegenburg, F., Thiel, V., de Haan, C.A., Reggiori, F. (2020): Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. – Journal of Virology 94(4): 21p

Corman, V.M., Muth, D., Niemeyer, D., Drosten, C. (2018): Hosts and sources of endemic human coronaviruses. – Advances in Virus Research 100: 163-188.

DeDiego, M.L., Álvarez, E., Almazán, F., Rejas, M.T., Lamirande, E., Roberts, A., Shieh, W.J., Zaki, S.R., Subbarao, K., Enjuanes, L. (2007): A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. – Journal of Virology 81(4): 1701-1713.

Dong, N., Yang, X., Ye, L., Chen, K., Chan, E. W. C., Yang, M., Chen, S. (2020): Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. – BioRxiv 14p.

Dutzan, N., Abusleme, L. (2019): T Helper 17 Cells as Pathogenic Drivers of Periodontitis. – In Oral Mucosal Immunity and Microbiome, Springer 11p.

Edrada, E.M., Lopez, E.B., Villarama, J.B., Villarama, E.P.S., Dagoc, B.F., Smith, C., Sayo, A.R., Verona, J.A., Trifalgar-Arches, J., Lazaro, J., Balinas, E.G.M. (2020): First COVID-19 infections in the Philippines: a case report. – Tropical Medicine and Health 48(1): 1-7.

Hoang, V.M., Hoang, H.H., Khuong, Q.L., La, N.Q., Tran, T.T.H. (2020): Describing the pattern of the COVID-19 epidemic in Vietnam. – Global Health Action 13(1): 7p.

Khafaie, M.A., Rahim, F. (2020): Cross-country comparison of case fatality rates of COVID-19/SARS-COV-2. – Osong Public Health and Research Perspectives 11(2): 74-80.

Kwok, K.O., Wong, V.W.Y., Wei, W.I., Wong, S.Y.S., Tang, J.W.T. (2020): Epidemiological characteristics of the first 53 laboratory-confirmed cases of COVID-19 epidemic in Hong Kong, 13 February 2020. – Eurosurveillance 25(16): 9p.

Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Pan, P., Wang, W., Hu, D., Liu, X., Zhang, Q. (2020): Coronavirus infections and immune responses. – Journal of Medical Virology 92(4): 424-432.

Li, F., Li, W., Farzan, M., Harrison, S.C. (2005): Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. – Science 309(5742): 1864-1868.

Masters, P.S. (2006): The molecular biology of coronaviruses. – Advances in Virus Research 66: 193-292.

Mulangu, S., Dodd, L.E., Davey Jr, R.T., Tshiani Mbaya, O., Proschan, M., Mukadi, D., Lusakibanza Manzo, M., Nzolo, D., Tshomba Oloma, A., Ibanda, A., Ali, R. (2019): A randomized, controlled trial of Ebola virus disease therapeutics. – New England Journal of Medicine 381(24): 2293-2303.

Neuman, B.W., Kiss, G., Kunding, A.H., Bhella, D., Baksh, M.F., Connelly, S., Droese, B., Klaus, J.P., Makino, S., Sawicki, S.G., Siddell, S.G. (2011): A structural analysis of M protein in coronavirus assembly and morphology. – Journal of Structural Biology 174(1): 11-22.

Ng, O.W., Chia, A., Tan, A.T., Jadi, R.S., Leong, H.N., Bertoletti, A., Tan, Y.J. (2016): Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. – Vaccine 34(17): 2008-2014.

Perlman, S., Netland, J. (2009): Coronaviruses post-SARS: update on replication and pathogenesis. – Nature Reviews Microbiology 7(6): 439-450.

Poon, L.L., Chu, D.K., Chan, K.H., Wong, O.K., Ellis, T.M., Leung, Y.H.C., Lau, S.K., Woo, P.C.Y., Suen, K.Y., Yuen, K.Y., Guan, Y. (2005): Identification of a novel coronavirus in bats. – Journal of Virology 79(4): 2001-2009.

Quilty, B.J., Clifford, S., Flasche, S., Eggo, R.M. (2020): Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). – Eurosurveillance 25(5): 1560-7917.

Rabi, F.A., Al Zoubi, M.S., Kasasbeh, G.A., Salameh, D.M., Al-Nasser, A.D. (2020): SARS-CoV-2 and coronavirus disease 2019: what we know so far. – Pathogens 9(3): 14p.

Schoeman, D., Fielding, B.C. (2019): Coronavirus envelope protein: current knowledge. – Virology Journal 16(1): 1-22.

Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., Cassone, A. (2006): New insights into the antiviral effects of chloroquine. – The Lancet Infectious Diseases 6(2): 67-69.

Vincent, M.J., Bergeron, E., Benjannet, S., Erickson, B.R., Rollin, P.E., Ksiazek, T.G., Seidah, N.G., Nichol, S.T. (2005): Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. – Virology Journal 2(1): 1-10.

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W. and Xiao, G. (2020): Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. – Cell Research 30(3): 269-271.

Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H.C., Larson, N. (2016): Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. – Nature 531(7594): 381-385.

Woo, P.C., Lau, S.K., Li, K.S., Poon, R.W., Wong, B.H., Tsoi, H.W., Yip, B.C., Huang, Y., Chan, K.H., Yuen, K.Y. (2006): Molecular diversity of coronaviruses in bats. – Virology 351(1): 180-187.

Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., Hao, P. (2020): Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. – Science China Life Sciences 63(3): 457-460.

Yan, Y., Zou, Z., Sun, Y., Li, X., Xu, K.F., Wei, Y., Jin, N., Jiang, C. (2013): Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. – Cell Research 23(2): 300-302.

Zumla, A., Chan, J.F., Azhar, E.I., Hui, D.S., Yuen, K.Y. (2016): Coronaviruses-drug discovery and therapeutic options. – Nature Reviews Drug Discovery 15(5): 327-347.

Downloads

Published

2021-08-07

How to Cite

MAZHAR, M. W., MAHMOOD, J., SAIF, S., SHAHZADI, M. B., & ASLAM, H. (2021). SEVERE ACUTE RESPIRATORY SYNDROME (SARAS COVID-2): A COMPREHENSIVE REVIEW. Quantum Journal of Medical and Health Sciences, 1(4), 25–33. Retrieved from https://qjmhs.com/index.php/qjmhs/article/view/9

Issue

Section

Articles